MISCELLANEOUS EXERCISE

Choose the correct options for each of the following questions. Questions marked with * may have more than one correct options.

- 1. The correct order of the size of the iodine species is:
 - (A) $I < I^+ < I^-$
- (B) $I < I^- < I^+$
- (C) $I^+ < I^- < I$
- (D) $I^+ < I < I^-$
- 2. The law of triads is applicable to:
 - (A) Hydrogen, Oxygen, Nitrogen
 - (B) Chlorine, Bromine, Iodine
 - (C) Sodium, Neon, Calcium
 - (D) None
- **3.** Which of the following gains electrons more easily?
 - (A) $X^{-}(Cl^{-}, Br^{-}, I^{-})$
- (B) OH-
- (C) H⁻
- (D) None
- **4.** Highest covalent character is found in which of the following?
 - (A) CaF₂
- B) CaCl,
- (C) CaI₂
- (D) CaBr₂
- 5. Which of the following anions is most easily polarized?
 - (A) Cl⁻
- (B) Se²⁻
- (C) Br
- (D) Te²⁻
- ***6.** The non-metallic cation is in
 - (A) CrO₂Cl₂
- (B) VOCI
- (C) OF₂
- (D) PCl₃
- *7. Which of the following is(are) correct?
 - (A) Double bond is shorter than a single bond
 - (B) σ -bond is weaker than a π -bond
 - (C) Double bond is stronger than a single bond
 - (D) Covalent bond is stronger than a hydrogen bond
- 8. The geometrical configuration (structure) of BF₃ and NF₃ molecules is:
 - (A) The same because of same covalency of the central atom
 - (B) Different because BF₃ is polar and NF₃ is non-polar
 - (C) Different because BF₃ is non-polar and NF₃ is polar
 - (D) None of these

- 9. When the number of electron pairs on the central atom is six, then geometry of the molecule is:
 - (A) Octahedral
- (B) Trigonal bipyramidal
- (C) Equilateral triangle (D) Linear
- **10.** Select correct statement about valence-bond approach :
 - (A) Each bond is formed by maximum overlap for its maximum stability
 - (B) It represents localised electron model of bonding
 - (C) Most of the electrons retain the same orbital locations as in a separated atoms
 - (D) All are correct atoms
- 11. In vinyl acetylene $\overset{1}{C}H \equiv \overset{2}{C} \overset{3}{C}H = \overset{4}{C}H_2$, type of overlapping in $(C \ \sigma \ C)$ bond is:
 - $(A) sp^2 sp$
- (B) $sp sp^2$
- (C) $sp^3 sp^3$
- (D) $sp^3 sp^2$

ОН

- 12. The compound $(CH_3 C = CH_2)$ contains
 - (A) 10σ -bonds, 1π -bond and 1 lone pair
 - (B) 8 σ -bonds, 2π -bonds and 2 lone pairs
 - (C) 9 σ bonds, 1π bond and 2 lone pairs
 (D) 9 σ bonds, 2π bonds and 1 lone pair
- *13. Select correct statement about NH₃ and BF₃.
 - (A) BF_3 and NH_3 have same dipole moment
 - (B) Dipole moment of NH₃ is higher than that of BF₃
 - (C) BF₃ molecule has a planar structure, while the NH₃ molecule is pyramidal
 - (D) The nitrogen atom has unshared pair of electrons, while the boron atom has a free (vacant) valence orbital
- **14.** Which of the following ions has the maximum polarising power?
 - (A) Na⁺
- (**B**) Ca²⁺
- (C) Mg^{2+}
- **(D)** Al^{3+}

- *15. Which property is due to H-bonding?
 - High b.p. of water **(A)**
 - High viscosity of sulphuric acid
 - **(C)** Solubility of ammonia in water
 - Polar nature of halogen acid
- Number of water molecules directly attached to one water 16. molecule is (due to H-bonding):
 - **(A)** 1
- **(B)** 2
- **(C)**
- **(D)**
- Which of the following has the highest percentage of 17. ionic character in its bonding?
 - (A) LiI
- (B) MgCl₂ (C) CsF

3

- **(D)** CsI
- 18. Which of the following is most polar bond?

 - (A) $C \vdash C \mid (B) \quad N \vdash F \mid (C) \quad C \vdash F \mid (D) \quad O \vdash F$
- 19. The strength of bonds by overlapping of atomic orbitals is in order:
 - (A) s-s>s-p>p-p (B) s-s<p-p<s-p
 - (C) s-p < s-s < p-p (D) p-p < s-s < s-p
- 20. Which of the following molecules has the shortest carbon-to-carbon bond?
 - (A) C_2H_4
- (\mathbf{B}) $\mathbf{C}_{2}\mathbf{H}_{6}$

- (C) C_2H_2 (D) C_2Cl_6
- 21. In terms of polar character, which one of the following order is correct?
 - (A) $NH_3 < H_2O < HF < H_2S$
 - (B) $H_2S < NH_3 < H_2O < HF$
 - (C) $H_2O < NH_3 < H_2S < HF$
 - (D) $HF < H_2O < NH_3 < H_2S$
- 22. How many σ and π -bonds are there in the molecule of tetracyano-ethylene?
 - 4σ , 14π **(A)**
 - **(B)** $5\sigma, 13\pi$
 - (C) $8\sigma, 10\pi$
 - (\mathbf{D}) 9 σ , 9 π
- $\begin{bmatrix} N \equiv C \\ N \equiv C \end{bmatrix} C = C \begin{bmatrix} C \equiv N \\ C \equiv N \end{bmatrix}$
- 23. The BCl₃ is a planar molecule whereas NCl₃ is pyramidal because:
 - **(A)** BCl bond is more polar than N—Cl bond
 - N—Cl bonds is more covalent that B—Cl bond
 - **(C)** Nitrogen atom is smaller than boron atom
 - BCl₃ has no lone pair electrons but NCl₃ has a lone **(D)** pair of electrons
- Which one of the following has the highest dipole 24. moment?

- **(A)** AsH₂
- **(B)** SbH₂
- **(C)** PH_3
- (**D**) NH₂
- **25.** Which one of the following molecules will form a linear polymeric structure due to hydrogen bonding?
 - NH₃
- (B) H_2O (C) HCl (D)
- H₂O is dipolar, whereas BeF₂ is not. It is because: **26.**
 - The electronegativity of F is greater than that of O
 - H₂O involves hydrogen bonding whereas BeF₂ is a discrete molecule
 - **(C)** H₂O is linear and BeF, is angular
 - H₂O is angular and BeF₂ is linear
- 27. The molecule having highest bond energy is:
 - (A) N—N (B) F—F(C) C—C (D) O—O

- 28. In 1, 3-butadiene (H₂C=CH-CH=CH₂), the carbon atom is hybridised as:

- (A) sp (B) sp² (C) sp³ (D) sp² and sp³
- 29. Hybridization of 1 and 2 carbon atom in

$${}^{1}_{CH_{2}} = {}^{2}_{C} = CH_{2}$$
 are :

- (A) sp, sp
- (B) sp^2 , sp^2
- (C) sp^2 , sp
- (\mathbf{D}) sp³, sp²
- **30.** The correct order of dipole moments of HF, H₂S and H₂O is:
 - (A) $HF < H_2S < H_2O$ (B) $HF < H_2S > H_2O$
 - - $HF>H_2S>H_2O$ (D) $HF>H_2O>H_2S$
- The molecule having minimum dipole moment among the following is:
 - CHI, **(A)**
- (**B**) CH₄
- CHCl₂ **(C)**
- (D) CCl₄
- The interatomic distance in H₂ and Cl₂ molecules are 74 and 198 pm respectively. The bond length of HCl is:
 - 272 pm
- **(B)** 136 pm
- 124 pm **(C)**
- **(D)** 248 pm
- The type of bonding(s) present inNH₄Cl is(are): *33.
 - ionic **(A)**
- **(B)** covalent
- coordinate **(C)**
- **(D)** singlet
- Which of the following statement(s) is(are) true?
 - **(A)** HF is more polar than HBr
 - CuCl is more covalent than NaCl **(B)**
 - **(C)** HF is less polar than HBr
 - Chemical bond formation takes place when forces **(D)** of attraction overcome the forces of repulsion

- A diatomic molecule has a dipole moment of 1.2 D. If its **35.** bond distance is 1.0Å, what fraction of an electric charge exist on each atom?
 - (A) 0.25
- **(B)** 0.5
- (C) 0.025
- **(D)** 0.05
- **36.** According to Fajan rules, the covalent character is most favored in:
 - **(A)** Small cation large anion
 - **(B)** Small cation, small anion
 - (C) Large cation, large anion
 - (D) Large cation, small anion
- **37.** The hybrid states of carbon in diamond, graphite and acetylene are respectively:
 - (A) sp^2 , sp, sp^3
- (B) sp, sp², sp³
- (C) sp^3 , sp^2 , sp
- (D) sp^2 , sp^3 , sp
- 38. In which of the following molecule, all the atoms lie in one plane?
 - (A) CH_{Δ}
- **(B)** BF₃
- (C) PF₅
- (**D**) NH₂

- **39.** Which pair of elements among the following will form most stable ionic bond:
 - (A) Na and Cl
- **(B)** Mg and F
- Li and F
- (D) Na and F
- *40. The stability of ions of Ge, Sn and Pb will be in the
 - (A) $Ge^{2+} < Sn^{2+} < Pb^{2+}$ (B) $Ge^{4+} < Sn^{4+} < Pb^{4+}$
 - $Sn^{4+} > Pb^{2+}$
- (D) $Pb^{2+} > Pb^{4+}$
- 41. In OF₂, number of bond pairs and lone pairs of electrons are respectively:
 - (A) 2, 6
- **(B)** 2, 8
- (C) 2, 10
- (D) 2, 9
- The correct order of polarizability for I⁻, Br⁻, Cl⁻, F⁻ is: **42.**
 - (A) $I^- > Br^- > Cl^- > F^-$ (B) $I^- > Br^- = Cl^- > F^-$
 - (C) $I^- < Br^- < Cl^- < F^-$ (D) $I^- = Br^- < Cl^- = F^-$

ANSWERS TO MISCELLANEOUS EXERCISE							
	1. D	2. B	3. D	4. C	5. D	6. CD	7. ACD
	8. D	9. A	10. D	11. B	12. C	13. BCD	14. D
	15. ABC	16. D	17. C	18. C	19. A	20. C	21. B
	22. D	23. D	24. D	25. D	26. D	27. C	28. B
	29. C	30. D	31. BD	32. B	33. ABC	34. ABD	35. A
	36. A	37. C	38. B	39. D	40. AD	41. B	42. A